Say you have list of CIDR's and want to check if given IP falls in the CIDR. This is useful for making fast routing decisions.
I looked at liner time algrithm and was amused at such a naive algorithm. The algorithm simply stored a struct of subnet and mask in a vector. Look up iterates though the vector and checks if the ip belongs to a subnet. This feels very inefficient.
I decided to implement a fancy algorithm. Use first eight bits in the subnet as key into a hash map. Store the rest of the 24 bits ( to be precise 24 - [# bits in mask - 8] ) in a binary trie. The hash helps me to identify some of the mismatches in jst on lookup. Then in worst case of 24 comparisions the algorithm figures out if the ip falls in a subnet or not. I was about to implement compressing the common branches in trie but was tempted to test the performance inprovements.
I have compared SubnetVector class that does a linear lookup vs CidrMap class that uses hashmap for first level lookup and followed by binary trie. For a list of 7000 subnets I have seen CidrMap takes about 5 micro seconds for each lookup and SubnetVector took 200 micro seconds for each lookup. For a list of 500 CIDRs linear lookup took 20 micro seconds and CidrMap took 5 micro seconds. I guess it makes sense when we have tens of thousands of cidr's to lookup. I was disappointed. All this to save microseconds.
Conclusions:
1. No need to over engineer.
3. SubnetVector has good caching property because of the vector.
4. CidrMap has very bad caching. Not sure how to improve the caching property.But hey does it really make sense to cut chips off 6 micro seconds?
#include <iostream>
#include <tr1/memory>
#include <tr1/unordered_map>
#include <vector>
#include <fstream>
extern "C"
{
#include <sys/time.h>
#include <stdlib.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
}
class node ;
typedef std :: tr1 :: shared_ptr < node > nodePtr ;
class node {
public :
node () {
m_leaf = false ;
}
~ node (){}
void setLeaf () {
m_leaf = true ;
}
bool isLeaf (){
return m_leaf ;
}
void setOne ( nodePtr one ) {
m_one = one ;
}
void setO ( nodePtr o ) {
m_o = o ;
}
nodePtr getOne () {
return m_one ;
}
nodePtr getO (){
return m_o ;
}
private :
bool m_leaf ;
nodePtr m_one ; // 1 child in bitwise tree
nodePtr m_o ; // 0 child in bitwise tree
};
class Trie {
public :
Trie (){};
~ Trie (){};
void addSubnet ( const std :: vector < char > & subnet );
void addNode ( nodePtr nd , const std :: vector < char > & subnet , int position );
bool searchSubnet ( const std :: vector < char > & ip );
bool searchNode ( nodePtr nd , const std :: vector < char > & ip , int position );
private :
nodePtr m_head ;
};
void Trie :: addSubnet ( const std :: vector < char > & subnet ) {
if ( m_head == NULL ) {
nodePtr nd ( new node ());
m_head = nd ;
}
addNode ( m_head , subnet , 0 );
}
void Trie :: addNode ( nodePtr nd , const std :: vector < char > & subnet , int position ) {
if ( position < subnet . size ()) {
if ( subnet [ position ] == '1' ) {
if ( nd -> getOne () == NULL ) {
nodePtr n ( new node ());
nd -> setOne ( n );
if ( position == subnet . size () - 1 )
nd -> setLeaf ();
addNode ( n , subnet , position + 1 );
}
else {
if ( position == subnet . size () - 1 )
nd -> setLeaf ();
addNode ( nd -> getOne (), subnet , position + 1 );
}
}
else if ( subnet [ position ] == '0' ) {
if ( nd -> getO () == NULL ) {
nodePtr n ( new node ());
nd -> setO ( n );
if ( position == subnet . size () - 1 )
nd -> setLeaf ();
addNode ( n , subnet , position + 1 );
}
else {
if ( position == subnet . size () - 1 ) {
nd -> setLeaf ();
}
addNode ( nd -> getO (), subnet , position + 1 );
}
}
else {
abort ();
}
}
}
bool Trie :: searchSubnet ( const std :: vector < char > & ip ) {
if ( m_head == NULL || ip . size () == 0 )
return false ;
return searchNode ( m_head , ip , 0 );
}
bool Trie :: searchNode ( nodePtr nd , const std :: vector < char > & ip , int position ) {
if ( ip [ position ] == '0' ) {
if ( nd -> isLeaf ()){
return true ;
}
else if ( nd -> getO () != NULL ) {
return searchNode ( nd -> getO (), ip , position + 1 );
}
else {
return false ;
}
}
else if ( ip [ position ] == '1' ) {
if ( nd -> isLeaf ()) {
return true ;
}
else if ( nd -> getOne () != NULL ) {
return searchNode ( nd -> getOne (), ip , position + 1 );
}
else {
return false ;
}
}
else {
abort ();
}
}
class CidrMap {
private :
std :: tr1 :: unordered_map < int , Trie > m_map ; // use first 8 bits to see if the ip fallas in cidr or not
public:
bool put ( std :: string & subnet );
bool put ( in_addr_t prefix , int mask );
bool get ( std :: string & ip );
bool get ( in_addr_t ip );
};
bool CidrMap :: put ( std :: string & cidr ) {
std :: string :: size_type idx = cidr . find ( '/' );
if ( idx != std :: string :: npos ) {
in_addr_t ip , mask ;
cidr [ idx ] = 0 ;
inet_pton ( AF_INET , cidr . c_str (), & ip );
int bits = atoi ( cidr . c_str () + idx + 1 );
return put ( static_cast < in_addr_t > ( htonl ( ip )), bits );
}
return false ;
}
bool CidrMap :: put ( in_addr_t prefix , int mask ) {
std :: vector < char > subnet ;
int l1Index = (( prefix & 0xff000000 ) >> 24 ) & 0x000000ff ; // first eight bits used as key in hash map, value is a trie
prefix = prefix & 0x00ffffff ; // next 24 bits in trie
prefix = prefix << 8 ;
unsigned tmask = 0x800000 ;
while ( mask -- > 0 ) {
if ( prefix & tmask ) {
subnet . push_back ( '1' );
}
else {
subnet . push_back ( '0' );
}
tmask = tmask >> 1 ;
}
//for(int i=0;i<subnet.size();i++)
// std::cout << subnet[i] << " ";
//std::cout << std::endl;
if ( m_map . find ( l1Index ) == m_map . end ()) {
Trie obj ;
obj . addSubnet ( subnet );
m_map [ l1Index ] = obj ; // <<- hash the first eight bits to Trie that holds next 24 bits
}
else {
m_map [ l1Index ]. addSubnet ( subnet );
}
}
bool CidrMap :: get ( std :: string & ip ) {
in_addr_t bip ;
inet_pton ( AF_INET , ip . c_str (), & bip );
get ( static_cast < in_addr_t > ( htonl ( bip )));
}
bool CidrMap :: get ( in_addr_t ip ) {
std :: vector < char > ipv ;
int l1Index = ( ip & 0xff000000 ) >> 24 ;
unsigned mask = 0x80000000 ;
ip = ip & 0x00ffffff ;
ip = ip << 8 ;
for ( int i = 0 ; i < 24 ; i ++ ) {
if ( ip & mask ) {
ipv . push_back ( '1' );
}
else {
ipv . push_back ( '0' );
}
mask = mask >> 1 ;
}
//for(int i=0;i<ipv.size();i++)
// std::cout << ipv[i] << " ";
//std::cout << std::endl;
if ( m_map . find ( l1Index ) == m_map . end ())
return false ;
else
return m_map [ l1Index ]. searchSubnet ( ipv );
}
/*
* Sample implementation for holding subnets in vector.
* Lookup is linear in time.
*/
struct Netblock {
in_addr_t addr ;
in_addr_t mask ;
};
class SubnetVector {
private :
std :: vector < Netblock > NetblockVec ;
public :
void put ( std :: string subnet ) {
size_t idx = subnet . find ( '/' );
subnet [ idx ] = 0 ;
Netblock n ;
if ( inet_pton ( AF_INET , subnet . c_str (), & n . addr ) == 1 ) {
if ( inet_pton ( AF_INET , subnet . c_str () + idx + 1 , & n . mask ) == 1 ) {
n . addr &= n . mask ;
NetblockVec . push_back ( n );
}
}
}
bool get ( std :: string & ip ) {
in_addr_t bip ;
inet_pton ( AF_INET , ip . c_str (), & bip );
for ( std :: vector < Netblock >:: iterator n = NetblockVec . begin (); n != NetblockVec . end (); ++ n ) {
if ( match_mask ( bip , n -> addr , n -> mask ) )
return true ;
}
return false ;
}
bool match_mask ( in_addr_t remote_addr , in_addr_t addr , in_addr_t mask ) {
if (( remote_addr & mask ) == addr ) return true ;
return false ;
}
};
/*
* Helper functions to read cidr's/ip's from files into vectors
*/
void fillCidr ( std :: vector < std :: string > & cidrvec , std :: string file ) {
std :: ifstream infile ( file . c_str ());
std :: string cidr ;
while ( infile >> cidr )
cidrvec . push_back ( cidr );
}
void fillip ( std :: vector < std :: string > & ipvec , std :: string file ) {
std :: ifstream infile ( file . c_str ());
std :: string ip ;
while ( infile >> ip )
ipvec . push_back ( ip );
}
int main () {
CidrMap cmap ;
SubnetVector cvec ;
std :: vector < std :: string > cidrvec ;
std :: vector < std :: string > ipvec ;
fillCidr ( cidrvec , "cidr.txt" );
fillip ( ipvec , "ip.txt" );
for ( std :: vector < std :: string >:: iterator itr = cidrvec . begin (); itr != cidrvec . end (); itr ++ ) {
cmap . put ( * itr ); // fill the hashmap of tries
cvec . put ( * itr ); // fill the vector
}
for ( std :: vector < std :: string >:: iterator itr = ipvec . begin (); itr != ipvec . end (); itr ++ ) {
struct timeval b , e ;
unsigned long long t1 , t2 ;
bool m , v ;
gettimeofday ( & b , NULL );
t1 = b . tv_usec + ( unsigned long long ) b . tv_sec * 1000000 ;
m = cmap . get ( * itr ); // <- lookup in hashmap
gettimeofday ( & e , NULL );
t2 = e . tv_usec + ( unsigned long long ) e . tv_sec * 1000000 ;
std :: cout << "[" << t2 - t1 << "] " ;
gettimeofday ( & b , NULL );
t1 = b . tv_usec + ( unsigned long long ) b . tv_sec * 1000000 ;
v = cvec . get ( * itr ); // <- lookup in vector
gettimeofday ( & e , NULL );
t2 = e . tv_usec + ( unsigned long long ) e . tv_sec * 1000000 ;
std :: cout << "[" << t2 - t1 << "] " ;
//std:: cout << m << "] [" << v << "] " << *itr << std::endl;
}
}
//sample file contains Subnet's
203.127.225.0 / 24
203.208.30.0 / 24
202.175.244.0 / 24
202.78.97.0 / 24
//sample file containing IP's
95.97.91.13
95.97.93.12
// sample output. First column is time taken for trie lookup. second column is time taken for linear lookup. Time is in microseconds.
[ 6 ] [ 222 ]
[ 5 ] [ 222 ]
[ 4 ] [ 252 ]
[ 6 ] [ 286 ]
[ 4 ] [ 218 ]